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Abstract

DBSCAN and OPTICS are powerful algorithms for identifying clusters of points in
domains where few assumptions can be made about the structure of the data. In
this paper, we leverage these strengths and introduce a new algorithm, LINSCAN,
designed to seek lineated clusters that are difficult to find and isolate with existing
methods. In particular, by embedding points as normal distributions approximating
their local neighborhoods and leveraging a distance function derived from the Kull-
back Leibler Divergence, LINSCAN can detect and distinguish lineated clusters that
are spatially close but have orthogonal covariances. We demonstrate how LINSCAN
can be applied to seismic data to identify active faults, including intersecting faults,
and determine their orientation. Finally, we discuss the properties a generalization
of DBSCAN and OPTICS must have in order to retain the stability benefits of these
algorithms.

1 Introduction

Many existing clustering algorithms require some prior knowledge of the dataset and are limited in
the possible shapes they can identify. For example, both K-Means Clustering and Gaussian Mixture
Model (GMM) Expectation Maximization require a prior estimate of the number of clusters existing
in the dataset and struggle to distinguish clusters that are not linearly separable.

In contrast, DBSCAN and OPTICS iteratively generate clusters by leveraging a heuristic for the local
behavior of clustered points. In particular, the designers equated clusters to connected regions of high
density (Ester et al., [1996). Thus, by identifying points whose local neighborhoods are highly dense,
even with little prior knowledge about the local geometry of the data, one can iteratively grow clusters
from those points. The number of clusters then comes naturally from the geometry of the data itself,
rather than being a parameter.

In this paper, we seek to leverage this characterization of clusters using a clustering metric other than
Euclidean distance. In particular, we propose an algorithm that can distinguish between multiple
quasi-linear clusters that may be closely spaced but have nearly orthogonal covariances. This is
motivated in particular by the need to identify and map seismically active faults given a catalog of
precisely located earthquakes, an important problem in geophysics (Fialkol 2021} [Zou et al., [2023}
Shelly et al.l [2023). In addition, the potential of the algorithm is not limited to geophysics, but it
may also help identify the linear spatial patterns of other natural features such as soil and airborne
pollution, and man-made directional patterns including roads and hiking trials (Barden) 1963} [saaks
and Srivastava), (1989; Mai et al., [2018)).

1.1 Motivating Problem

We wish to isolate quasi-linear clusters (QLCs) in point clouds and distinguish clusters that are
geometrically close, or possibly overlap, but have different orientations. Quasi linear clusters are a
cluster of points where: 1) each point is within € of some other point in the cluster, 2) the total
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Figure 1: (Left) Test data, (Right) DBSCAN Results

cluster has a nearly singular covariance matrix. This problem arises, for example, in geophysics, when
one attempts to identify active seismogenic faults based on epicentral locations of microearthquakes
(Cochran et all, 2020} [Fialko| [2021}; [Shelly et all) [2023). Although faults are three-dimensional quasi-
planar surfaces, in appropriate projections they appear as linear features, so that the associated
locations of micro-earthquakes can be recognized as quasi-linear features after accounting for noise.

To highlight the deficiency of existing algorithms for this task, consider a synthetic data set shown in
Figure[l] The data set includes QLCs, some of which intersect each other (e.g., see around coordinate
(-4,-.6)), as well as irregularly shaped clusters and "background noise." Figure [1| shows the results
obtained by applying DBSCAN (described in Section 2) to the data. Note that the output includes
both linear and irregular clusters, with some QLCs conjoined with irregular clusters. Furthermore,
many QLCs that are geometrically close (e.g., intersecting or overlapping) are considered to be part
of the same cluster.

1.2 Contributions

a. We design an algorithm that can be used to identify quasi-linear clusters in a point cloud
without losing the stability guarantees of well-established clustering algorithms like DBSCAN
and OPTICS.

b. We compare our framework to ADCN (Mai et all [2016), a previous attempt at applying
DBSCAN to a similar task, and discuss how the design of ADCN leads to the shape and
number of clusters being sensitive to changes in the order of the points. This is in contrast
to LINSCAN, which is invariant to the ordering of the points for clustering.

c. We prove that while our distance measure is not a metric, it satisfies positivity and symmetry
on the space of Gaussian distributions (see Lemma , and a slightly relaxed form of the
triangle inequality (see Theorem [3.2). These results combine to mean that clusters in this
metric are stable under the order of the points and are spatially dense.

1.3 Notation

Here we summarize the notation that will be used throughout the rest of this paper:

a. For € > 0, we let B¢(x) be the open ball of radius € centered at x (in the standard Euclidean
norm).

b. For finite £ C RY,
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(a) pg € R? is the sample mean of E.
(b) X € R¥4 i the sample covariance matrix of E.

Given u € R? and ¥ € R?*? with ¥ symmetric positive definite, A'(u, ¥) is the multivariate
Gaussian distribution with mean p and covariance X.

c. We let ||A| , := tr(AT A) denote the Frobenius norm.

d. For positive definite A, ||z| , := VaT Az is the elliptic norm defined by A.
e. For a general matrix A, let |A| denote the determinant of A.
f. We let P(X') be the set of probability distributions on X and let P(X) be the power set of X.

g. A QLC is a subset of points S C X satisfying:

(a) Vz € S, Jy € S\ {z} such that ||z — y|| < e for some small e,

(b) the covariance ¥g satisfies cond(Xg) > 7 for some large 7.

We begin by summarizing the most popular clustering algorithms, namely DBSCAN and OPTICS, to
provide context for readers lacking a background in clustering theory. Those familiar with DBSCAN
and OPTICS can skip directly to section 3.

2 Background: DBSCAN and OPTICS

2.1 DBSCAN

The main principle behind DBSCAN is that clusters are equivalent to connected regions of high density.
Thus, the most natural way to identify clusters is to search for points whose local neighborhoods
contain a high density of points from the dataset and inductively grow clusters from those points.

In what follows, assume X = {x1,...,z,,} C R? is a point cloud and let ¢ > 0 and minPts € N be two
parameters. We say ¢ € X is a core point if #(B.(z) N X) > minPts, where B.(z) is the ball of
radius € about x.

Then, for two points p and ¢, we say ¢ is core reachable from p if there exist core points pi, ..., pn
such that pyy1 € Be(py) for all k € {0,...,n — 1}, p € Bc(po), and g € B(pp).

As a result, core reachability is an equivalence relation. DBSCAN then defines clusters to simply
be equivalence classes under this relation, with clusters containing fewer than minPts points being
labeled as noise. Algorithm 1 in the supplemental documents provides a pseudocode description of
how this is done.

DBSCAN satisfies a few important properties. First, because core reachability is independent of the
order of the points, DBSCAN is invariant under permutations of the point cloud. Furthermore, we do
not need to specify the number of clusters beforehand, and all of the operations are highly efficient so
long as one can efficiently calculate B(x) N X.

2.2 OPTICS

OPTICS acts as a generalization of DBSCAN, improving its robustness on datasets with regions
of various densities and partially abstracting away the e parameter (Ankerst et al.; [1999). The most
popular and effective implementation of OPTICS takes in three parameters: €, minPts, and &, although
€ is optional and only serves to shorten the run-time of the algorithm.
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For p € X, let Rs(p) := X N Bs(p) for § > 0. We let the core distance d.oo(p) be the minimum
d such that Rs(p) contains minPts points. Alternatively, it is the minimum ¢ such that p would be
considered a core point if DBSCAN were to be performed using § as e.

For p,0 € X, we define the reachability distance from o to p as dyeach (p|0) = max {dcore(0), ||p — o||} -

The reachability distance describes the minimum e such that o is considered a core point and p is
contained in an e-neighborhood of 0. Note that this can be infinite if dcope(0) = 00. OPTICS proceeds
to develop a priority queue using a process described in the supplemental document in Algorithms 2
and 3.

While OPTICS is slightly slower than DBSCAN, it abstracts away one of the parameters, replacing
it with one less tied to the geometry of X. Furthermore, it is far more robust to datasets with regions
of varying density.

2.3 Related Work

The choice to use Euclidean distance with DBSCAN/OPTICS is arbitrary. The stability of the algo-
rithm only depends on the fact that the distance function is symmetric and non-negative. Importantly,
the function does not need to satisfy the triangle inequality (e.g.,[Khamsi and Kirk} 2011} p. 8), which
allows us to work with non-metrics.

Anisotropic DBSCAN: The idea of extending DBSCAN/OPTICS to domains where we seek lin-
earity is not entirely new. Previously, an algorithm called ADCN was developed to solve this problem
by redefining the search neighborhoods from circles to ellipses whose eccentricity reflects the local
covariance of the point (Mai et al., [2016)). In practice, ADCN performs as well as DBSCAN in many
tasks and performs better in cases where clusters are locally linear in otherwise highly noisy datasets.

However, ADCN is not well-suited for our task in particular because it does not provide the desired
separation of adjacent or intersecting QLCs. On the contrary, it can produce artifacts around the
intersection areas, say for a T-shaped intersection as in Figure [8] Furthermore, the point selection
process in ADCN is non-symmetric, meaning that in certain cases the clustering behavior may be
unstable to permutations of the points. Figures [3d] and [B¢] show two runs of ADCN on the same
dataset with the same parameters but with the dataset in a different order. Note how sensitive the
behavior of the algorithm is to the order of the points. Our proposed algorithm performs more stably,
as demonstrated below.

Anisotropic Kernels and Spectral Clustering: There are a large number of kernel method
algorithms that use anisotropic kernels and local Mahalanobis distances to define similarity, see for
example Wang et al. (2007)); |Talmon and Coifman| (2013); |Arias-Castro et al.| (2017)); [Lahav et al.
(2019); |Cheng et al.| (2020); [Peterfreund et al.| (2020). In practice, these can capture a similar notion
of local similarity to our proposed approach and have been used for spectral clustering. For example,
Arias-Castro et al. (2017)) considers a similar problem to ours in clustering data that arises from
intersecting manifolds.

However, regardless of the kernel similarity, spectral clustering and k-means (or another clustering
algorithm) in the latent space fail in our noisy setting, where most of the points do not belong to any
cluster. This is because k-means and spectral clustering algorithms perform poorly for data sets that
are not a union of well-separated clusters (either in the original space or feature space of the kernel)
Little et al. (2020), which was the motivation for the initial development of DBSCAN. There exist
DBSCAN-like spectral clustering algorithms that are robust to outliers by using path-based similarity
Chang and Yeung (2008); Little et al.| (2020), but these algorithms have no bias towards QLCs or
other degenerate clusters. For these reasons, we do not include explicit comparions to these methods
in this manuscript and restrict ourselves to DBSCAN/OPTICS based algorithms.
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3 New Algorithm: LINSCAN

3.1 The Embedding and Distance

LINSCAN seeks to keep the advantages of DBSCAN while being applicable to the task of distinguish-
ing QLCs. To do this, we embed data points into P(R?), the space of probability measures on R?,
and then cluster the data using a notion of distance between distributions.

LINSCAN has 3 required parameters minPts, eccPts, and £ and one optional parameter e. minPts,
¢, and € are identical to the corresponding parameters in OPTICS, but eccPts is a parameter specific
to LINSCAN which determines how we form the distributions we use for clustering. Letting R™(z)
be the m-nearest neighbors to x in X, we define a mapping

reEX =N (;U'ReccPcS(I)u HZ;CC:S(C))H )
cPts (1) ||

Thus, we embed each point in the dataset as the normal distribution best approximating its eccPts-
nearest neighbors, which allows us to cluster the points based on the local covariance of the data.
Note that we rescale the covariance matrix to have maximal eigenvalue of 1.

To perform clustering in this space, we define a distance function as

R [ ~1/2 1la—1/2 —1/2 1 1
D(P.Q) = 5|2 5pmg! ~ 1]+ 5||m5 0 e 1|+ e — pallsy + 5l — malls
where P = N (pup,Xp) and Q = N (ug, Xg) for positive definite X p and Y. Note that this function is
symmetric and D(P, Q) = 0 if and only if P = Q. Although D does not satisfy the triangle inequality
and is thus not a metric, later we will discuss an approximate form of the triangle inequality that D
does satisfy (see Theorem [3.2)). Note that by choosing to normalize the covariances as above, we have

D(P,Q) > V2|lup — qll, (1)

Thus, points can be efficiently disqualified from consideration without having to calculate the more
expensive matrix terms if the means are sufficiently far apart, which can be used to improve the
run-time of the algorithm. This is, in particular, how we utilize €, as this means we can filter out
pairs points using standard spatial methods (KD-Trees, etc.) in Euclidean space to filter out points
that are sufficiently far apart without having to compute their distance in our distance measure.

Once the points have been embedded as distributions, we run OPTICS on P = {P;}., with Euclidean
distance replaced by D(-,-), and cluster X based on the results. The full process is described in
Algorithm 4 (see supplemental document).

3.2 Motivating the Definition of D

We recall that on a probability space X', the Kullback-Leibler Divergence between two Gaussians
P=N(up,Xp)and Q = N(ug, Xq) satisfies

1. | 1
KL(P|Q) =  log [Zql , 1

_ 1 -
|ZP| 2 tr(Zlep - I) + §(MP - MQ)TZQI(MP - IU’Q)

One can show (see supplemental document) that if

$-1/2y 2‘1/2—1H <1, th
‘Q Pag P b then

1 o B 2 - - 3 1 _
KL(P|Q) = ZHZ‘QUQZPEQUQ - IHF +o (tr ((EQ”szzQ”Q - I) )) + 5 (1p = 1) "Sg (P — q)
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So, we can define an approximation of K L(P|Q) by

1 B 2 1 .
M(P|Q) = ZHZQ”QEPZQW - IHF + 5 (e = 1) 3g (np — 1)

This motivates the symmetric distance function D(P,Q), which takes term-wise square roots of
M(P|Q) and M (Q|P) to more closely approximate a metric.

We note that other metrics, in particular Wasserstein-2 distance, also have a closed form between
Gaussians. While this is a metric, the distance between the means and covariances are independent,
whereas D incorporates the Mahalanobis distance and penalizes differences in mean more heavily
in directions orthogonal to the local linearity of the point. Furthermore, the Wasserstein-2 distance
scales polynomial in the magnitude of the eigenvalues of the covariance matrices as the angles diverge,
whereas D penalizes orthogonal covariance inversely to the size of the minimum eigenvalues for high
eccentricity clusters. This ensures that two points with large deviations in covariance direction will
be far apart in D, even if spatially close to one another, and thus these points will not fall into the
same cluster.

3.3 Behavior of D

Our distance measure is not a metric. However, in the case of Gaussians, it satisfies the properties
of symmetry and separation of points in general, and, as we will show in Theorem [3.2] it satisfies a
relaxed form of the triangle inequality.

Lemma 3.1 Let P = N (pp,Xp) and Q = N (g, Xqg) be Gaussians. Then,
a. D is symmetric, meaning
D(P,Q) = D(Q,P)
b. D(P,Q) =0 iff P =Q (in particular D(P,P) =0)

Proof:

a. Trivial
b. Note that by the definition of D,
D(P.Q) =0 < |up —polls 1 = lur = pelly,r =0 and £578p5g"? = $p128o0p 12 = 1

Since we assume all of the covariance matrices are invertible, the first equalities hold iff
pup = pq. Similarly, the second equalities hold iff ¥p = Xq. Hence, D(P,Q) =0iff P =Q

While D does not satisfy the full triangle inequality, one can show that it satisfies a slightly relaxed
version. We utilize the matrix commutator [-,-] : R¥4 x R4X4 — R*4 which measures the degree to
which two matrices commute via [A, B] := AB — BA.

Theorem 3.2 Let e > 0. If D(P,Q),D(Q, K) <, then
D(P,K) < D(P,Q)+ D(Q,K) + V2 +V2e/1+ e+ + E(P,Q,K),

where E(P,Q,K) =0 if ¥p, Xg, and Lx commute and otherwise has a (loose) bound of
—1/2 —1/2
619010 = o o5, + oz

—1/2 «—1/2 —1/2 —1/2 «—1/2 —1/2
+ Coue|[217 557227 |+ Cha[221% 25 miemg

and each constant C; ; depends on ratios of eigenvalues of ¥; and X; fori,j € {P,Q,R}.
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The proof relies on a significant number of inequalities and is provided in the appendix. The proof
proceeds by separating the first two terms of D(P, K) from the last two and showing that each pair
individually satisfies the triangle inequality with small additive errors.

Importantly, this shows that for small values of €, D behaves approximately like a metric, which allows
us to bound the diameter of any cluster in terms of € and the number of steps between points in the
cluster. This ensures that points whose local neighborhoods are nearly orthogonal are not clustered
together.

Compare this to the best results proven previously for the approximate triangle inequality of the
unmodified KL-Divergence between Gaussians in [Zhang et al.| (2021]), which was of exponential order.

4 Numerical Results

Experiments with synthetic data sets revealed that some clusters identified by LINSCAN may not
appear as sufficiently "linear" upon visual inspection (e.g., due to high scatter of data points). There-
fore we introduce an additional quality check whereby we compute the covariance matrix of each
cluster. In the case of R?, we set a minimal threshold 7 on the ratio of the minimum eigenvalue to the
maximum eigenvalue of the covariance matrix and remove the groups that do not meet this threshold.

4.1 Runtime Comparisons

One possible issue with working with a custom distance measure is the cost of calculating all possible
distances. In figure [2] we plot the cost of calculating all pairwise distances for datasets of various sizes
as eccPts varies, as well as on a system with a GPU to accelerate the distance computation and one
without. We can see that even for large amounts of points, the runtime for calculating both distance
measures across all pairs of points is less than a second on average. For comparison, the runtime of
the actual clustering algorithm is on the order of 20 seconds on our machine, so although the runtime
is higher for LINSCAN’s distance measure, that cost is dwarfed by the core clustering algorithm.

On top of this, if further speedups are required, we can use out-of-the box spatial indexing methods.
Using [1} we can lower bound the distance between two distributions by the distance between their
means, which means that we can perform an efficient initial step where we filter out pairs whose means
are sufficiently far apart before calculating our distance measure on the remaining pairs.

Figure 2: Distance Runtime
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4.2 Example Datasets

Figure [3] shows an example of synthetic data with two QLCs intersecting at a high angle. Note that
unlike DBSCAN, LINSCAN is able to separate the two QLCs. Further, we can see the dependence on
point order in ADCN, as the clustering behavior is sensitive to initialization, in contrast to LINSCAN
which is fully deterministic and independent of the ordering of points.

Figure [4a] shows the results of applying LINSCAN to the same data as in Figure [T} Figure [b| shows
the clusters with the noise points removed, and Figure [4c|shows the results of removing clusters with
spectral ratio greater than % Note the separation of clusters in the bottom left and top left corners
in comparison to the results from DBSCAN.

Figure [5| shows the results of applying LINSCAN to real data representing earthquake epicenters in
Southern California (Fialko and Jin| [2021)). Not only does LINSCAN identify QLCs and remove the
"diffuse" background seismicity, but it is also able to identify the clusters at multiple distinct scales
by varying minPts. If we try to do the same thing with OPTICS we get multiple clusters, but we
fail to form specifically linear clusters. We don’t contrast against ADCN, as getting a representative
picture of its performance on a dataset of this size requires applying the algorithm many times from
different initializations due to the dependence of ADCN of the order of the points.

Figure 3: Crossing Lines
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(b) DBSCAN results
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4.3 Measuring Performance

To quantitatively evaluate the algorithm performance, we conducted several tests on synthetic, labeled
data. We generated 10 linear clusters, 5 isotropic clusters, and 10 pairs of linear clusters intersecting
at angles in the range [.1m,.97] and separated them from one another in space. An example is given
in Figure [6a]

To score the performance, we use the Adjusted Rand Index from Hubert and Arabie] (1985):
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Figure 4: Synthetic Data
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Definition 4.1 (Rand Index) Let X = {x1,...,z,} be a set of elements and consider two partitions
C={Cy,....Cp} and C' ={C1,...,C}, i.e. C; C X and C; C X for all i and

with
Ciij:CZ(mCJ/-:(Z)

for alli# j. Let
a::#{(x,y) EXxX:x#y, 3i,j st x,yeC’i,x,yeCj’»}
and

bi=#{(z,y) e X x X :x#y, 3,4,k st i#jk#lL,xeCLzelC,yeCjycC}

a is the number of pairs of elements of X such that both elements are in the same cluster in C and C’
and b is the number of pairs of elements of X such that both elements are in different clusters in both
C and C'. Then, the Rand Index is given by

a+

(5)

So, R(C,C’) is the fraction of pairs of elements of X such that C and C' both agree about whether the
pair of elements lie in the same cluster or not. Note that R is symmetric in C and C' and lies in the
interval [0,1]. However, random partitions are not guaranteed to have near-zero pairwise Rand Indez.
To remedy this, we use the Adjusted Rand Index

R(X,C,C) =

R(C,C") —E[R(C,C")]

ARI(C,C') = 1-E[R(C,C")

where the expectation is taken over random partitions of X with the same number of clusters and
number of elements in each cluster as C and C'. Unlike the Rand Indez, the Adjusted Rand Index may
be negative, but it is a better measure of the similarity between two partitions as the Rand Index tends
to be higher on average for finer partitions regardless of similarity.
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Figure 5: Real Data
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5 Experimental results

In our synthetic experiments, we perform hyperparameter optimization of both LINSCAN and OP-
TICS (for comparison) on 10 synthetic datasets using a random search of the feature space for 500

10
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trials, applying our spectral filtering to both LINSCAN and OPTICS. We then report the test accuracy
of both algorithms on 40 synthetic datasets. The results are as follows:

Algorithm ‘ OPTICS LINSCAN
Validation ARI | 46.73% 61.48%
Testing ARI 46.40% 64.19%

In particular, even though the parameter space for LINSCAN is much larger than OPTICS (optimizing
minPts, eccPts, £, and 7 compared to just minPts, ¢, and 7), LINSCAN performed better on both
the validation data and the testing data and generalized as well as or better than OPTICS. A sample
of the performance of LINSCAN and OPTICS on generated data is given in Figure [f]

Figure 6: Generated Data

(a) Dataset (b) LINSCAN Results (c) OPTICS Results
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Code availability

The source codes are available for downloading at the link, which has been anonymized for the purposes
of blind review: http://bit.1ly/419AFZg

6 Conclusion

We present a method for detecting linear clusters in noisy data. This is done using a novel distance
measure, motivated by KL-divergence between small data-driven Gaussian representations of the
points, inside of the OPTICS algorithm. We also prove that our distance measure has more regular
local behavior than the standard symmetrized KL Divergence. This approach significantly outperforms
the DBSCAN family of algorithms that do not have a priori bias towards lineated clusters. Finally,
we have shown our approach is shown to be effective in detecting linear slip faults in seismic data and
are currently exploring additional applications of our algorithm in other domains.
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A Approximation of K L(P|Q)

First, log|A| is the logarithm of the product of the eigenvalues of A, which is the same as the sum of
the logarithms of the eigenvalues. Therefore,

log | 4] = tr(log(4))

where log(A) is the matrix logarithm, which exists and is unique for any positive definite matrix A.
In particular, if A = QAQT for orthogonal @ and diagonal A > 0,

log A = Qlog(A)QT

where log A is the diagonal matrix given by applying the logarithm entrywise to each diagonal entry.
Given this,

b
logLQ‘ = log [Xq| — log |Zp|

Xp|
= tr (log(Xq) — log(Xp))

Next, for any positive definite matrices A and B,

tr (log(AB)) = tr(log(A)) + tr(log(B))
log(A™") = —log(4)

Furthermore, if ||A — I|| < 1, then the sum
. (71)k+1 (A - I)k
k
n=1

converges in ||-||  to log(A). Combining all of this, if HE;/QEPZ;/Q - IH < 1 then

tr (log(Xq) — log(Xp))

= —tr (log (Zél/2> +log (Xp) + log (Zélﬂ))

= —tr <10g (251/22132651/2))

- —1/2 —1/2 Ak
b Z(U’C“(EQ T )

k=1
—1/2 —1/2 k
tr ( (34" 2pzg!? ~ 1)
k+1

== -

k=

1
_ _ 1 _ _ 2 B _ 3
= —tr (357 2pzg P - 1) + 51 <<2Q1/22p2Q1/2 1) > +o <tr <(2q Vesprgt - ) >)

B —1/2 —1/2 1|w-1/2 —1/2 2 —1/2 —1/2 3
——tr<ZQ £p¥, —I>+§H2Q S —IHF+0<tr<(EQ £p¥, —I)

where in the last line we used the fact that 251/ s pZél/ _Tis symmetric and for any symmetric
matrix A

tr(A%) = tr(A7 4) = || A%
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Next, note that
tr(X5'Sp — I) = te(S5?2prg? — 1)

So, combined with the prior derivations,

Xel 1
1 7t Yoxp—1
|E ‘ + I‘( Q “~P )

2 3
_ ~1/2 —1/2 —1/2 —1/2
_ZHEQ npYg —IHF+o(tr((EQ 278 s —I) )>

from which the rest of the approximation follows.

B Proof of Relaxed Triangle Inequality

We recall that

1.— _
R e RS ]

1
+ %H,UP - HQ”zal + EHHP —Hellg
These terms are all nonnegative, so if D(P, Q) < € then each term is at most €. To show the relaxed
triangle inequality, we define

Dy(P,Q) =55 22ps g ~ 1|+ |55 220s7 2 - 1]

F
and
Dy (P,Q) := ||up — /~LQH251 + [lup — MQ”;};}
so that 1 1
D(P, =-D;(P — Dy (P.
( 7Q) 9 1( 7Q)+\/§ 2( 7Q)
Then,

Dy(P,K) = |lpp = pxllsr + e = pxlls

<llup = pQlls o +llng = prlls s +llee = nellsr +llne = pxlls»

= Da(P.Q) + D2(Q, K) + |lup = nollsr = e = nalls + llne = nxlls = llne = pxclln s
Note that

lup = ol = e = nolls, = ||=x (e = o) |, = [ 25" (e = o)

<12 (P — nq) —25'"° (upfuc;))H2
= (57 - 25") (ur - o)
_ (2—1/221/2 _ I) 251/20“3 — 4o H
N ) R |

1/21/2
= EK/EQ/ _IHQHNP_MQHEE;

< |=x*2g? -
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Now, note that HE;/QE}Q/Z — IH2 is the square root of the maximal eigenvalue of
—1/2w1/2 —1/2¢1/2
sy - DTE 2y - D
Therefore,

2
[ 2sd? — 1)), = e 2mg® - T g - )

ZI—(1/2EQEI—(1/2 _ ZI—(1/221Q/2 _ Z1Q/22I—(1/2 i IH
2

<|[s2nou 2~ 1 . HQI S Pt vyt 222/22;{1/2“2
B it e e

IR SV STy | RS 2HI - 2;(1/2252“
2 2

T PEer - ||+ 2| =52y - IH2

Solving this for HE;(” o I‘

, we get
2

oot v o o e ] < v o e ] < e

So,

—1/21/2
e = ol = e = ngllsr < ||ER?2g® = 1]| e < e+ evTFe

A similar statement holds for ||ug — pxlls-1 — [|ng — px|lg-1, s0
P Q

DQ(P,K) S DQ(P,Q) + DQ(Q,K) +26+ 26\/ ]. +€
Next,

e T R it Pl At A

< E1;1/221(21;1/2 _ 2651/221(2631/2HF _ HE;1/2EQE;1/2 B IHF

< 21—31/221(21—31/2 _ 2651/221{2(51/2 _ 2131/22@21_:1/2 4 IHF

_ (I _ Z631/2213251/2) (I _ 2;{1/22@2;{1/2) n 21;1/22})2;{1/2 _ 251/22P251/22;/22QZ;{1/2HF

IA

I EC—?l/QEPEél/zHFHI _ El_(l/zzQEI_{l/2HF i HEI_(1/2EPEI_(1/2 _ Zg21/2ZPEC—Ql/zEI—{l/zEQEI—(l/QHF

<+ ”21—(1/22132;(1/2 B 251/2213251/22;(1/22@2;/2HF

A similar argument shows
~1/2 —-1/2 —-1/2 -1/2 ~1/2 -1/2
HEK XrXk _IHF_ HZQ XrZg _IHF_ HEK XoXk _IHF

<+ HZI_JI/QEKZI_JI/Q B Z51/22KEC—21/221—)1/22Q21—31/2HF
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Combining these,

DI(P7K) < Dl(PaQ) +D1(Q7K) + 262
4 HZ;/QZPE;(IM _ 251/22P251/22;/22Q2;/2HF

4 "2;1/221(2;1/2 _ 2651/221(2631/22;1/22622;’1/2HF

If [A, B] = AB — BA is the commutator of A and B,
“2}1/22132[—{1/2 _ 251/2213251/22;(1/22@21_(1/2HF
< E;{1/22132;/2 _ 2}1/2251/221’251/22@2;/2HF

4 Ef(l/ZEél/QEpEél/zEQE;{l/Q _ Eél/Zszél/ngl/zzQE;{l/QHF

_ 2}1/22192;{1/2 _ 2}1/2251/22P26}1/22Q2RI/2HF

i {21—(1/2’ E651/22132631/2] EQEI_(UQ ‘F

_1/2251/22P251/22Q2;<1/2HF

I
\e

—1/2 —-1/2w—1/2 —1/2
PR 2 Y YR PO YRLiid ot

n {Z;{l/z, Eél/QEPZE)l/Z] Z622;(1/2 i
_ EI_(I/Q {EP,EE;/Q} Eél/ZZQEI_(l/QHF 4 H {2;/27251/2213251/2} EQEI_(I/2HF

_ Ei;(1/2 [ZP,251/2:| 222/22;(1/2“ + ‘ {2}1/2,251/2213251/2} EQz;{l/zH
F F

Similarly,
”2—1/22}(2—1/2 _ 2—1/221(2—1/22—1/22 2—1/2HF

1/2 ~1/2] y11/252 1/2 1/2 5=1/2 —1/2 ~-1/2
<[5 g g | 55 e i

So finally, if we let
E(P,Q,K) 2HE 1/2 {Epszl/z} 21/22}1/2”1? QH[ —1/2 EQl/zZ v 1/2} S0y 1/2”
—1/2 —1/2] «1/25—1/2 —1/2 «—1/2 —-1/2 —1/2
I e B R I e
then the theorem follows.
E(P,Q, K) satisfies slow growth behaviour in our context. If ¥p, X, Xk are jointly diagonalizable,
then clearly E(P,Q, K) = 0 since each commutator will be 0. Beyond this, we can trivially bound F
by
E(P.Q.K) < Cax||2r 2" |, + o[ 5020207,
$-1/2 o1/2 \1/2 —1/2
+ Cral[2r. 20 ]|, + Crof [22* 20 2mg |,

and each constant C; ; depends on ratios of eigenvalues of ¢,j € {P, Q, R}.
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C Algorithms

Algorithm 1 DBSCAN

Input: Data X = {z1,..., 2}, € > 0, minPts € N
Output: Clusters {C}}
n<+0
N« 0
while X \ (N U2, Cr) # 0 do
Pick z € X \ (N UUZ) Cr)
if #R.(z) < minPts then
N+ NU{z}
else
Cy  {z}
S Re(2)\ (N U {z})
while S # () do
Pick y € S
if #R.(y) < minPts then
N + N U{y}
S S\{y}
else
C, « C, U{y}
S (SUR(y)\ (NUCy)
end if
end while
if #C),, < minPts then
N+ NUC(C,
Cp 0
else
n<+<n+1
end if
end if
end while=0
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Algorithm 2 OPTICS

Input: Data X = {z1,....,om}, € >0, minPts e N, n=0,Q =0
Output: Ordering @), minimal reachability distances dmin : X — R>g
for p € X do
dim(p) ¢ 00
end for
for p € X unprocessed do
N < Rc(p)
Mark p as processed
Q <« QU {p}
if deore(p) # 00 then
S=0
update(N, p, S, €, minPts)
for ¢ € S do
N' + R.(q)
Mark ¢ as processed
Q<+ QUgq
if deore(q) # 00 then
update(N, p, S, e, minPts)
end if
end for
end if
end for=0

Algorithm 3 Update

Input: Neighborhood N, core point p, queue S, € > 0, minPts € N
for o € N do
dpew = max {dcore(p)v ||p - OH}
if dmin(0) = 0o (Note this means o ¢ S) then
dmin(o) <~ dnew
S =Su{o}
else
if dpew < dmin(0) then
dmin(o) <~ dnew
Reorganize S to be in increasing order by value of dy;y,
end if
end if
end for=0
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Algorithm 4 LINSCAN

Input: Data X = {x1,..., 2}, € > 0, minPts € N, n =0, N = (), eccPts € N
Output: Clusters {C}}
n <+ 0
N+
P 0
for x € X do
M I/LReccPts(a:)
D ERcccPts(I)
P N(u,%)
P+ PU{P}
end for
{Dy} < OPTICS(P, ¢, minPts)
for k€ {0,1,...,n} do
Ck%{.Z‘iGXZPl‘EDk}
end for=0
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